Surveying

Surveyor at work with a leveling instrument.
Table of Surveying, 1728 Cyclopaedia

Surveying or land surveying is the technique and science of accurately determining the terrestrial or three-dimensional position of points and the distances and angles between them. These points are usually on the surface of the Earth, and they are often used to establish land maps and boundaries for ownership or governmental purposes.

To accomplish their objective, surveyors use elements of geometry, engineering, trigonometry, mathematics, physics, and law.

An alternative definition, per the American Congress on Surveying and Mapping (ACSM), is the science and art of making all essential measurements to determine the relative position of points and/or physical and cultural details above, on, or beneath the surface of the Earth, and to depict them in a usable form, or to establish the position of points and/or details.

Furthermore, as alluded to above, a particular type of surveying known as "land surveying" (also per ACSM) is the detailed study or inspection, as by gathering information through observations, measurements in the field, questionnaires, or research of legal instruments, and data analysis in the support of planning, designing, and establishing of property boundaries. It involves the re-establishment of cadastral surveys and land boundaries based on documents of record and historical evidence, as well as certifying surveys (as required by statute or local ordinance) of subdivision plats/maps, registered land surveys, judicial surveys, and space delineation. Land surveying can include associated services such as mapping and related data accumulation, construction layout surveys, precision measurements of length, angle, elevation, area, and volume, as well as horizontal and vertical control surveys, and the analysis and utilization of land survey data.

Surveying has been an essential element in the development of the human environment since the beginning of recorded history (about 5,000 years ago). It is required in the planning and execution of nearly every form of construction. Its most familiar modern uses are in the fields of transport, building and construction, communications, mapping, and the definition of legal boundaries for land ownership.

Contents

History of surveying

Surveying techniques have existed throughout much of recorded history. In ancient Egypt, when the Nile River overflowed its banks and washed out farm boundaries, boundaries were re-established by a rope stretcher, or surveyor, through the application of simple geometry. The nearly perfect squareness and north-south orientation of the Great Pyramid of Giza, built c. 2700 BC, affirm the Egyptians' command of surveying.

In the 18th century in Europe triangulation was used to build a hierarchy of networks to allow point positioning within a country. Highest in the hierarchy were triangulation networks. These were densified into networks of traverses (polygons), into which local mapping surveying measurements, usually with measuring tape, corner prism and the familiar red and white poles, are tied. For example, in the late 1780s, a team from the Ordnance Survey of Great Britain, originally under General William Roy began the Principal Triangulation of Britain using the specially built Ramsden theodolite. Large scale surveys are known as geodetic surveys.

A cadastre loses its value if register and maps are not constantly updated. Because of the fundamental value of land and real estate to the local and global economy, land surveying was one of the first professions to require Professional Licensure. In many jurisdictions, the land surveyors license was the first Professional Licensure issued by the state, province, or federal government.

Surveying techniques

A standard Brunton Geo compass, still used commonly today by geologists and surveyors for field-based measurements.

Historically, distances were measured using a variety of means, such as with chains having links of a known length, for instance a Gunter's chain, or measuring tapes made of steel or invar. To measure horizontal distances, these chains or tapes were pulled taut according to temperature, to reduce sagging and slack. Additionally, attempts to hold the measuring instrument level would be made. In instances of measuring up a slope, the surveyor might have to "break" (break chain) the measurement- use an increment less than the total length of the chain.

Historically, horizontal angles were measured using a compass, which would provide a magnetic bearing, from which deflections could be measured. This type of instrument was later improved, with more carefully scribed discs providing better angular resolution, as well as through mounting telescopes with reticles for more-precise sighting atop the disc (see theodolite). Additionally, levels and calibrated circles allowing measurement of vertical angles were added, along with verniers for measurement to a fraction of a degree—such as with a turn-of-the-century transit.

The simplest method for measuring height is with an altimeter — basically a barometer — using air pressure as an indication of height. But surveying requires greater precision. A variety of means, such as precise levels (also known as differential leveling), have been developed to do this. With precise leveling, a series of measurements between two points are taken using an instrument and a measuring rod. Differentials in height between the measurements are added and subtracted in a series to derive the net difference in elevation between the two endpoints of the series. With the advent of the Global Positioning System (GPS), elevation can also be derived with sophisticated satellite receivers, but usually with somewhat less accuracy than with traditional precise leveling. However, the accuracies may be similar if the traditional leveling would have to be run over a long distance.

Triangulation is another method of horizontal location made almost obsolete by GPS. With the triangulation method, distances, elevations and directions between objects at great distance from one another can be determined. Since the early days of surveying, this was the primary method of determining accurate positions of objects for topographic maps of large areas. A surveyor first needs to know the horizontal distance between two of the objects. Then the height, distances and angular position of other objects can be derived, as long as they are visible from one of the original objects. High-accuracy transits or theodolites were used for this work, and angles between objects were measured repeatedly for increased accuracy.

Surveying equipment

A German engineer surveying during the First World War, 1918

As late as the 1990s, the basic tools used in planar surveying were a tape measure for determining shorter distances, a level to determine height or elevation differences, and a theodolite, set on a tripod, to measure angles (horizontal and vertical), combined with the process of triangulation. Starting from a position with known location and elevation, the distance and angles to the unknown point are measured.

A more modern instrument is a total station, which is a theodolite with an electronic distance measurement device (EDM). A total station can also be used for leveling when set to the horizontal plane. Since their introduction, total stations have made the technological shift from being optical-mechanical devices to being fully electronic with an onship computer and software as well as humans.

Modern top-of-the-line total stations no longer require a reflector or prism (used to return the light pulses used for distancing) to return distance measurements, are fully robotic, and can even e-mail point data to the office computer and connect to satellite positioning systems, such as a Global Positioning System (GPS). Though real-time kinematic GPS systems have increased the speed of surveying, they are still horizontally accurate to only about 20 mm and vertically accurate to about 30–40 mm.[4]

Total stations are still used widely, along with other types of surveying instruments. However, GPS systems do not work well in areas with dense tree cover or constructions. One-person robotic-guided total stations allow surveyors to gather precise measurements without extra workers to look through and turn the telescope or record data. A faster but expensive way to measure large areas (not details, and no obstacles) is with a helicopter, equipped with a laser scanner, combined with a GPS to determine the position and elevation of the helicopter. To increase precision, beacons are placed on the ground (about 20 km apart). This method reaches precisions between 5–40 cm (depending on flight height).[5]

Types of surveys and applicability

Surveying as a career

The pundit (explorer) cartographer Nain Singh Rawat (19th century CE) received a Royal Geographical Society gold medal in 1876.

The basic principles of surveying have changed little over the ages, but the tools used by surveyors have evolved tremendously. Engineering, especially civil engineering, depends heavily on surveyors.

Whenever there are roads, railways, reservoir, dams, retaining walls, bridges or residential areas to be built, surveyors are involved. They establish the boundaries of legal descriptions and the boundaries of various lines of political divisions. They also provide advice and data for geographical information systems (GIS), computer databases that contain data on land features and boundaries.

Surveyors must have a thorough knowledge of algebra, basic calculus, geometry, and trigonometry. They must also know the laws that deal with surveys, property, and contracts.

In addition, they must be able to use delicate instruments with accuracy and precision. In the United States, surveyors and civil engineers use units of feet wherein a survey foot is broken down into 10ths and 100ths. Many deed descriptions requiring distance calls are often expressed using these units (125.25 ft). On the subject of accuracy, surveyors are often held to a standard of one one-hundredth of a foot; about 1/8th inch. Calculation and mapping tolerances are much smaller wherein achieving near-perfect closures are desired. Though tolerances such as this will vary from project to project, in the field and day to day usage beyond a 100th of a foot is often impractical.

In most of the United States, surveying is recognized as a distinct profession apart from engineering. Licensing requirements vary by state, but they generally have components of education, experience and examinations. In the past, experience gained through an apprenticeship, together with passing a series of state-administered examinations, was required to attain licensure. Now, most states insist upon basic qualification of a degree in surveying, plus experience and examination requirements.

The licensing process typically follows two phases. First, upon graduation, the candidate may be eligible to take the Fundamentals of Land Surveying exam, to be certified upon passing and meeting all other requirements as a surveyor in training (SIT). Upon being certified as an SIT, the candidate then needs to gain additional experience to become eligible for the second phase. That typically consists of the Principles and Practice of Land Surveying exam along with a state-specific examination.

Licensed surveyors usually denote themselves with the letters P.S. (professional surveyor), L.S. (land surveyor), P.L.S. (professional land surveyor), R.L.S. (registered land surveyor), R.P.L.S. (Registered Professional Land Surveyor), or P.S.M. (professional surveyor and mapper) following their names, depending upon the dictates of their particular state of registration.

In Canada, land Surveyors are registered to work in their respective province. The designation for a land surveyor breaks down by province, but follows the rule whereby the first letter indicates the province, followed by L.S. There is also a designation as a C.L.S. or Canada lands surveyor, who has the authority to work on Canada Lands, which include Indian Reserves, National Parks, the three territories and offshore lands.

In many Commonwealth countries, the term Chartered Land Surveyor is used for someone holding a professional license to conduct surveys.

A licensed land surveyor is typically required to sign and seal all plans, the format of which is dictated by their state jurisdiction, which shows their name and registration number. In many states, when setting boundary corners land surveyors are also required to place survey monuments bearing their registration numbers, typically in the form of capped iron rods, concrete monuments, or nails with washers.

Building surveying

Building surveying emerged in the 1970s as a profession in the United Kingdom by a group of technically minded General Practice Surveyors.[6] Building surveying is a recognised profession in Britain, Australia and Hong Kong. In Australia in particular, due to risk mitigation and limitation factors, the employment of surveyors at all levels of the construction industry is widespread. There are still many countries where it is not widely recognized as a profession.

Services that building surveyors undertake are broad but can include:

Building surveyors also advise on many aspects of construction including:

Clients of a building surveyor can be the government agencies, businesses and individuals. Surveyors work closely with architects, planners, homeowners and tenants groups. Building surveyors may also be called to act as an expert witnesses. It is usual for building surveyors to earn a college degree before undertaking structured training to become a member of a professional organisation.

With the enlargement of the European community, the profession of the building surveyor is becoming more widely known in other European states, particularly France.[9], where many English-speaking people buy second homes.

Lidar Surveying - Three-dimensional laser scanning provides high definition surveying for architectural, as-built, and engineering surveys. Recent technological advances make it the most cost-effective and time-sensitive solution for providing the highest level of detail available for interior and exterior building work.

Land surveyor

F.V. Hayden's map of Yellowstone National Park, 1871. His surveys were a significant factor toward establishing the park in 1872.

Cadastral land surveyors are licensed by state governments. In the United States, cadastral surveys are typically conducted by the federal government, specifically through the Cadastral Surveys branch of the Bureau of Land Management (BLM), formerly the General Land Office (GLO).[10]. In states that have been subdivided as per the Public Land Survey System (PLSS), the BLM Cadastral Surveys are carried out in accordance with that system. This information is required to define ownership and rights in real property (such as land, water, mineral, easements, rights-of-way), to resolve boundary disputes between neighbours, and for any subdivision of land, building development, road boundary realignment, etc.

The aim of cadastral surveys is normally to re-establish and mark the corners of original land boundaries. The first stage is to research relevant records such as land titles (deeds), easements, survey monumentation (marks on the ground) and any public or private records that provide relevant data. The job of a boundary surveyor retracing a deed or prior survey is to locate such monuments and verify their correct position. Over time, development, vandalism and acts of nature often wreak havoc on monuments, so the boundary surveyor is often forced to consider other evidence such as fence locations, woodlines, monuments on neighboring property, parole evidence and other evidence.

Monuments are marks on the ground that define location. Pegs are commonly used to mark boundary corners, and nails in bitumen, small pegs in the ground (dumpys) and steel rods are used as instrument locations and reference marks, commonly called survey control. Marks should be durable and long lasting, stable so the marks do not move over time, safe from disturbance and safe to work at. The aim is to provide sufficient marks so some marks will remain for future re-establishment of boundaries. Examples of typical man-made monuments are steel rods, pipes or bars with plastic, aluminum or brass caps containing descriptive markings and often bearing the license number of the surveyor responsible for the establishment of such. The material and marking used on monuments placed to mark boundary corners are often subject to state laws.

A total station, GPS or other instrument is set up over survey marks placed as part of a previous survey, or newly placed marks. The bearing datum is established by measuring between points on a previous survey and a rotation is applied to orientate the new survey to correspond with the previous survey or a standard map grid.

The data is analysed and comparisons made with existing records to determine evidence that can be used to establish boundary positions. The bearing and distance of lines between the boundary corners and total station positions are calculated and used to set out and mark the corners in the field. Checks are made by measuring directly between pegs places using a flexible tape. Subdivision of land generally requires that the external boundary is re-established and marked using pegs, and the new internal boundaries are then marked.

A plat (survey plan) and description (depending on local and state requirements) are compiled, the final report is lodged with the appropriate government office (often required by law), and copies are provided to the client.

The art of surveying

Many properties have considerable problems with regards to improper bounding, miscalculations in past surveys, titles, easements, and wildlife crossings. Also many properties are created from multiple divisions of a larger piece over the course of years, and with every additional division the risk of miscalculation increases. The result can be abutting properties not coinciding with adjacent parcels, resulting in hiatuses (gaps) and overlaps. The art plays a role when a surveyor must solve a puzzle using pieces that do not exactly fit together. In these cases, the solution is based upon the surveyor's research and interpretation, along with established procedures for resolving discrepancies.

References

  1. Johnson, Anthony, Solving Stonehenge: The New Key to an Ancient Enigma. (Thames & Hudson, 2008) ISBN 978-0-500-05155-9
  2. Hong-Sen Yan & Marco Ceccarelli (2009), International Symposium on History of Machines and Mechanisms: Proceedings of HMM 2008, Springer, p. 107, ISBN 1402094841 
  3. Donald Routledge Hill (1996), "Engineering", pp. 766-9, in Rashed, Roshdi; Morelon, Régis (1996), Encyclopedia of the History of Arabic Science, Routledge, pp. 751–795, ISBN 0415124107 
  4. National Cooperative Highway Research Program: Collecting, Processing and Integrating GPS data into GIS, p. 40. Published by Transportation Research Board, 2002 ISBN 0309069165, 9780309069168
  5. Toni Schenk1, Suyoung Seo, Beata Csatho: Accuracy Study of Airborne Laser Scanning Data with Photogrammetry, p. 118
  6. http://www.fig.net/pub/athens/papers/ts12/TS12_4_Kibblewhite_Wilkinson.pdf
  7. http://hp1.gcal.ac.uk/pls/portal30/my_gcal.Progcat_Pkg.ProgPage?gtype=UG&p_Course=BSBS
  8. http://www.prospects.ac.uk/cms/ShowPage/Home_page/Explore_types_of_jobs/Types_of_Job/p!eipaL?idno=121&state=showocc
  9. http://www.surveyorsinfrance.com
  10. A History of the Rectangular Survey System by C. Albert White, 1983, Pub: Washington, D.C. : U.S. Dept. of the Interior, Bureau of Land Management : For sale by Supt. of Docs., U.S. G.P.O.,
Notes
  • Keay J (2000), The Great Arc: The Dramatic Tale of How India was Mapped and Everest was Named, Harper Collins, 182pp, ISBN 0-00-653123-7.
  • Pugh J C (1975), Surveying for Field Scientists, Methuen, 230pp, ISBN 0-416-07530-4
  • Genovese I (2005), Definitions of Surveying and Associated Terms, ACSM, 314pp, ISBN 0-9765991-0-4.

External links